Cognitive Rehabilitation Strengthens Brain Connections

There is increased interest in brain and cognitive rehabilitation to treat people with mild thinking and memory problems. Parkinson’s disease, while typically viewed as a neurodegenerative motor disorder, also affects thinking and memory. In a small clinical trial with Parkinson’s disease patients, patients received either occupational therapy or cognitive rehabilitation. Those who had cognitive rehabilitation showed increases in functional connectivity (a measure of time-linked correlations between changes in blood flow in different parts of the brain) between the left inferior temporal lobe and the left and right dorsolateral prefrontal cortex. These are brain areas important for a number of cognitive functions including memory, planning, and mental manipulation of information. Those who did not receive cognitive intervention did not have increases in connectivity.

What does this mean for Parkinson’s disease and for cognitive rehabilitation? It’s difficult to say with this small study. It’s also unknown how long the changes last. Without a restructuring of the brain and continued cognitive rehabilitation it is not likely that the effects will last more than weeks or months after the rehabilitation ends.

To expand on this study (to bring in other research) and put things in simple terms, if people want to protect their brains they best they can as they age, they need to remain physically and mentally active and in good physical and mental shape. Learn new things. Travel to new locations. Take up a physically demanding hobby or dedicated exercise. This won’t solve all our aging problems but it will help a lot.

Reference

Díez-Cirarda, M., Ojeda, N., Peña, J. et al. Brain Imaging and Behavior (2016). doi:10.1007/s11682-016-9639-x

Memory Problems in Some With Parkinson’s Disease

From a recent news release by Jill Pease at the University of Florida.

Using a combination of neuropsychological testing and brain imaging, University of Florida researchers have discovered that in a group of recently-diagnosed patients with Parkinson’s disease, about one quarter have significant memory problems.

Parkinson’s disease is commonly known as a movement disorder that leads to tremors and muscle rigidity, but there is growing recognition of cognitive problems associated with the disease. One of the most common is slower thinking speed that causes patients to have trouble quickly retrieving information. The UF study identifies a subset of patients who have a different kind of cognitive issue — memory problems, or difficulty learning and retaining new information.

The findings were published July 24 in the journal PLOS ONE.

“While a large proportion of people with Parkinson’s will experience slower thinking speed, which may make them less quick to speak or have difficulty doing two things at once, we now know that there are a subset of individuals with Parkinson’s disease who have memory problems,” said Catherine Price, Ph.D., the study’s senior author and an associate professor in the UF College of Public Health and Health Professions’ department of clinical and health psychology, part of UF Health. “It is important to recognize which people have issues with learning and memory so we can improve diagnostic accuracy and determine if they would benefit from certain pharmaceutical or behavioral interventions.”

For the UF study, 40 people in the early stages of Parkinson’s disease and 40 healthy older adults completed neuropsychological assessments and verbal memory tests.

About half the participants with Parkinson’s disease struggled with an aspect of memory, such as learning and retaining information, or recalling verbal information, said lead author Jared Tanner, Ph.D., an assistant research professor in the UF department of clinical and health psychology who conducted the study as part of his dissertation research for a UF doctoral degree in clinical psychology.

“And then half of those participants, or nearly one quarter of all participants with Parkinson’s, were really having a difficult time consistently with their memory, enough that it would be noticeable to other people,” said Tanner, adding that researchers were encouraged by the fact that most participants in the initial stages of Parkinson’s were not having significant memory problems.

All participants received brain scans, which used new imaging techniques that allowed the scientists to navigate the pathways of white matter fibers, the tissue through which messages travel across the brain. The methodology was developed by the research group ofThomas Mareci, Ph.D., a professor of biochemistry and molecular biology in the UF College of Medicine, and is described in a paper published July 14 in PLOS ONE.

Experts have theorized that cognitive problems in Parkinson’s are caused by a shortage of the brain chemical dopamine, which is responsible for patients’ motor issues. But with the help of imaging, the UF researchers were able to spot changes in the brain’s gray and white matter that appear unrelated to dopamine loss and are specific to those patients with Parkinson’s who have memory problems.

“Not only is gray matter important for memory, in Parkinson’s disease white matter connections between the temporal lobe and a region in the posterior portion of the brain called the retrosplenial cortex were particularly important in the recall of verbal information,” Tanner said. “People with Parkinson’s disease who had stronger connections between these areas of the brain did better at remembering information.”

Tanner’s study is part of a larger research project supported by a $2.1 million grant from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health. Researchers led by Price are using imaging and cognitive testing to determine profiles for the cognitive problems that most commonly affect patients with Parkinson’s. The information gleaned from the research could help clinicians foreshadow the type of cognitive impairment a patient may experience over time, if any, and tailor treatment plans accordingly.

GABA receptor role in postoperative cognitive decline

About 20-30% of older adults (age greater than 60) undergoing major surgery experience temporary (generally reversed) memory and thinking deficits after major surgery, particularly heart and orthopedic. A small minority (<5%, probably much less) might not return to cognitive baseline (how they were before surgery). The cause of this decline in cognition is unclear, although many attribute it to the anesthesia used. So far, however, research has been inconclusive as to specific causes of cognitive difficulties after surgery. This is because surgeries are major events that affect most parts of the body, not just what is being operated upon. They are stressful – physically and emotionally.

Newly published research proposes one mechanism for causes of memory problems after surgery – anesthesia acting on ɣ-aminobutyric acid type A receptors (ɣ5GABAaR). This new research suggests that the function of these receptors does not return to baseline until much later than previously believed. This means that the normal function of chemicals in the brain, particularly ones important for memory, might be disrupted for longer than expected, and might play a role in memory problems that some individuals experience after major surgery.

Reference

Zurek, A. A., Yu, J., Wang, D. S., Haffey, S. C., Bridgwater, E. M., Penna, A., … & Orser, B. A. (2014). Sustained increase in ?5GABA A receptor function impairs memory after anesthesia. The Journal of clinical investigation, 124(12).

Patient HM’s Passing

On Tuesday, December 2, 2008, Henry M., the most famous patient in modern neuroscience research and literature, passed away. He was 82. In 1953, H.M. had an experimental brain operation to try to stop his frequent seizures; his medial temporal lobes were resected bilaterally, with significant portions of his amygdalas and hippocampi in both cerebral hemispheres removed (parts of the brain are still resected in intractable epilepsy cases, however neurosurgeons do not perform that exact surgery any more because of the negative effects). His seizures stopped but immediately after the operation he had a severe anterograde amnesia. This means that from when he received the operation at age 27, he was unable to establish new memories for world events and for general information.

His amnesia became the focus of much scientific study from after his operation until the present. No one patient has been studied more in the 20th and 21st centuries than H.M. His memory impairment was also interesting because his overall intellectual abilities were still intact as was his personality. Neuropsychologists and neuroscientists will forever be grateful for the things they learned from H.M.

The New York Times has a very nice article about H.M.

Revisiting Clive

Yesterday I posted a video clip about Clive Wearing. Here is the first part of a different documentary about Clive. This video goes more in-depth about his condition. Clive is sometimes referred to as the man with the shortest memory. Not only were his two hippocampi destroyed, but also surrounding areas of the his temporal lobes as well as portions of his left frontal lobe. He also remembers very little from before his illness, which is quite rare; this condition is called retrograde amnesia. Clive lives in an ever-present now, without connection to past or future. Other parts to this video can be found on YouTube.

The Unusual Case of Clive Wearing

Clive Wearing is a 70 year old British man who contracted herpes simplex encephalitis in 1985. The virus destroyed his hippocampi bilaterally (as well as surrounding areas). He has complete anterograde amnesia and can only remember up to about 20 seconds. He retained the ability to play the piano and conduct a choir (which he did previously to his illness); this is because this procedural memory involves different areas of the brain, including the basal ganglia and the cerebellum. I’ll revisit this case over the coming days. Meanwhile, here is a clip from a BBC production that presents part of Clive’s story.

The Hippocampus in 400 Words

I have to apologize for the paucity of posts on this blog. The grind of my semester got to me. After a few week break it’s time for a neuroanatomy post.

WIthin the temporal lobe of the brain is an elongated structure called the hippocampus. Some people have compared its shape to that of a seahorse (the word hippocampus comes from the Greek {hippos + campos}, which roughly means “seahorse”). This structure is special for a number of reasons. One is its role in memory encoding and consolidation.

From cytoarchitectonic standpoint, the hippocampus is special because unlike the surrounding cortex, it consists of only three layers instead of six. The hippocampus is phylogenetically an old part of the cortex, which means that it is an older branch on the evolutionary tree, whereas the rest of the cortex (more accurately called the neocortex), especially cortex of the frontal lobes, is a much newer development.

The hippocampus (to be more accurate, there are two hippocampi – one in each cerebral hemisphere) resides within the medial portion of the temporal lobe. It is continuous with the parahippocampal cortex, entorhinal cortex (the hippocampus receives its main input from this cortex), and perirhinal cortex. I’ll not write about the internal structure of the hippocampus, which becomes fairly complex, due to the brief nature of this post.

The hippocampus sends white matter tracts off its dorsal and posterior portions (the hippocampus also communicates through other tracts and pathways – this circuit is not the only output of the hippocampus). These white matter tracts are the fimbria of the hippocampus (technically, the fimbria are the “offshoots” of the alveus of the hippocampus). The fimbria proceeds upwards from the posterior portion of the hippocampus, at which point it ceases to be the fimbria and is called the fornix.

The fornices (plural of fornix) are prominent white matter tracts passing above the thalamus and medially in the brain. The fibers travel forward, then turn downward just posterior to the anterior commissure (a white matter tract that connects both hemispheres) to terminate in the mammillary bodies, two bumps on the ventral side of the brain. They are part of the hypothalamus of the brain. From there, the pathway courses upward through the mammilothalamic tract (MTT) to the anterior nucleus of the thalamus. From there axons course to the cingulate gyrus, then to the underlying cingulum (large white matter tract), and back to the hippocampus (via the parahippocampal and entorhinal cortices). This circuit is part of the limbic system and is called the Papez (pronounced “papes” – rhymes with capes) circuit. This circuit is important for emotion (and memory).

Learning and Recall – Hippocampal Firing

Today in Science a team of scientists (Hagar Gelbard-Sagiv, Roy Mukamel, Michal Harel, Rafael Malach, and  Itzhak Fried) at the Weizmann Institute of Science in Israel, UCLA, and Tel Aviv University published their research where they directly recorded via implanted electrodes the firing of hippocampus neurons during learning and free recall. This represents the first time in humans this has been done. Here’s the abstract from Science:

The emergence of memory, a trace of things past, into human consciousness is one of the greatest mysteries of the human mind. Whereas the neuronal basis of recognition memory can be probed experimentally in human and nonhuman primates, the study of free recall requires that the mind declare the occurrence of a recalled memory (an event intrinsic to the organism and invisible to an observer). Here, we report the activity of single neurons in the human hippocampus and surrounding areas when subjects first view television episodes consisting of audiovisual sequences and again later when they freely recall these episodes. A subset of these neurons exhibited selective firing, which often persisted throughout and following specific episodes for as long as 12 seconds. Verbal reports of memories of these specific episodes at the time of free recall were preceded by selective reactivation of the same hippocampal and entorhinal cortex neurons. We suggest that this reactivation is an internally generated neuronal correlate of the subjective experience of spontaneous emergence of human recollection. (Published Online September 4, 2008; Science DOI: 10.1126/science.1164685)

The New York Times also has an article about the research.